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Abstract

A new simulation program for multinuclear NMR is introduced. PJNMR (Pure Java NMR) 2.0, written entirely in the Java

programming language, simulates pulse sequences on systems of up to three weakly coupled spins-1/2 with a command-driven,

spectrometer-like interface. Users may simulate the effects of pulses, precessions, and pulsed field gradients on the spin system, with

a graphical display showing the state of the density matrix (in a novel polar-coordinate representation) as well as the magnetization

vectors for each nucleus. Relevant computations and optimizations as implemented in the code are detailed, along with the object-

oriented structures used. A description of the simulation environment is given, illustrated with a series of example pulse sequences

highlighting the insights gained in the graphical presentation.

� 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Due to the intrinsic quantum mechanical nature of

NMR, and the increasingly complex pulse sequences

available to the NMR spectroscopist, it is becoming

more and more difficult to reconcile experimental ob-
servations with one�s intuition. Therefore simulation

programs can be very useful, providing the NMR

practitioner with the ability to easily, quickly and visu-

ally probe the dynamics of spin systems in response to a

variety of complex pulse sequences. While approaches

like the product-operator [1] calculations are simple and

straightforward, they often replace physical insight and

intuition with long algebraic expressions. Simulation
programs give the scientist the ability to remain focused

on physical principles, while a computation engine

swiftly handles details like operator algebras and relax-

ation matrices.

Several NMR simulation tools are currently avail-

able. These programs such as �The Virtual NMR Spec-

trometer� [2], GAMMA [3], and SIMPLTN [4] focus on

high-accuracy data output for external processing, in-

cluding a large amount of spin physics in their simula-

tions. Due to their ambitious nature, these programs

often require programming expertise or computational

back-ends (e.g., MATLAB) to run them. Other pro-

grams target accurate simulations of a small number of
specialized effects in the spin system, such as relaxation

matrices (e.g., FIRM [5]), NOE (e.g., MORASS [6]),

and CSA (e.g., SIMMOL [7]). In all cases, generality is

balanced with ease of use. More complex calculations

require more sophisticated computational engines, and

more general simulations require the user to learn a

more generalized set of commands. To date, there are no

existing tools for graphical pulse sequence simulation
offering true platform-independence (without the use of

a back-end engine) while still presenting the two most

important quantities in the spin system: spin density and

observed magnetization.

This paper documents a newly developed program

that addresses these needs. PJNMR (Pure Java NMR)

simulates the effect of pulses, precessions, and gradient

pulses on systems of up to three weakly-coupled spins-
1/2. The program uses an approximate multiple posi-

tion approach [9] to simulate the effects of gradient

pulses. The density matrix, magnetization vectors, and
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pulse sequence are shown graphically as commands
are entered. This allows users to view directly the

relationships between quantum mechanical coherences

developed during the pulse sequence and the observed

magnetization. Written entirely in the Java program-

ming language, PJNMR users benefit from total

platform independence and a rich graphical interface.

The program is written using the Model-View-Con-

troller architecture, a well-known graphical interface
design principal [10]. The utility of the program is

demonstrated by showing a series of screen shots for

several common pulse sequences, illustrating the

highly educational and practical nature of the graph-

ical output.

PJNMR is designed to both illustrate difficult quan-

tum mechanical concepts in NMR, as well as allow the

NMR spectroscopist accurate and fast insight into the
behavior of spin systems in complex pulse sequences.

Because it is platform independent, the program appeals

to users in all computational environments.

2. Algorithms and methods

The purpose of this section is to provide the theo-
retical background for the computations performed in

PJNMR. The formalism presented in [1] is used

throughout. The theory is developed to the extent nee-

ded for someone familiar with NMR to understand the

mathematical methods used in the program.

2.1. Description of spin system

In Dirac notation, a wavefunction, W, can be repre-

sented as a superposition of orthonormal basis functions

jni,

W ¼
XN
n¼1

cnjni; ð1Þ

where N is the dimensionality of the vector space and cn
are complex coefficients. In a system of M spin-1/2 nu-

clei, N ¼ 2M , since there are 2 spin states for each nu-

cleus. For example, in a system of 2 spin-1/2 nuclei, the

wavefunction has the explicit form

W ¼ c1jaai þ c2jabi þ c3jbai þ c4jbbi: ð2Þ
We define the density matrix (or spin density) for the spin

system, r, such that

hnjrjmi ¼ cnc�m; ð3Þ
where the overbar indicates the ensemble average. The

density matrix has the property that the expectation

value hAi for an observable with associated operator A is
given by

hAi ¼ TrfrAg: ð4Þ

Keeping with the example of a 2-spin system, the density
matrix for the system has the form

r ¼

c1c�1 c1c�2 c1c�3 c1c�4
c2c�1 c2c�2 c2c�3 c2c�4
c3c�1 c3c�2 c3c�3 c3c�4
c4c�1 c4c�2 c4c�3 c4c�4

0
BB@

1
CCA: ð5Þ

Formally, diagonal elements of the density matrix rep-

resent state populations, and off-diagonal elements rep-
resent state transition probabilities. Element (1,1) in Eq.

(5) thus represents the population of the jaai state, and

element (1,3) represents the probability for transition

from the jaai state to the jbai state. Representing the

complex coefficients cn in polar coordinates, each has the

form

cn ¼ jcnjeiun : ð6Þ
Each element of the density matrix then has the form

cnc�m ¼ jcncmjei un�umð Þ; ð7Þ
where an ensemble average is implied. At thermal

equilibrium, state transitions have zero probability, so

the density matrix req is diagonal. Diagonal elements at

equilibrium are given by the Boltzman distribution:

req
mn ¼ dm;n �

e�En=kBTPN
i¼1 e�Ei=kBT

; ð8Þ

where dm;n is the Kronecker delta, Ei is the energy of

state i, kB is Boltzman�s constant, and T is the temper-

ature of the ensemble. A convenient computational
representation of the density matrix may be obtained

by invoking the high-temperature approximation (En �
kBT ), keeping only the first linear term in the expansion

of the exponentials in Eq. (8), and throwing away the

first constant term in the expansions (since the constant

term is not relevant to the NMR experiment):

req ¼ � B0

NkBT

XM
m¼1

cmImz; ð9Þ

where B0 is the magnetic field strength, cm is the gyro-

magnetic ratio of nucleus m, Imz is the z-angular mo-

mentum operator for nucleus m (the precise matrix

forms of these operators are discussed below), and M is

the number of spins in each unit of the ensemble (i.e.,

chemical group, molecule, etc.).1 Dividing through by

the constant �B0=NkBT in front along with the sum of

the (absolute values of) gyromagnetic ratios for all nu-

clei, we obtain

req
comp ¼ req

� B0

NkBT

PN
m¼1 jcmj

¼
PN

m¼1 cmImzPN
m¼1 jcmj

: ð10Þ

1 Note that the density matrix in Eq. (9) has units of 1=�h, where �h is

Planck�s constant divided by 2p, namely skg�1 m�2. In the form in Eq.

(10) below, req
comp ¼ req= �B0

NkBT

PM
m¼1 cmj j is nondimensionalized.
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In the form of Eq. (10), the density matrix is conve-
niently normalized for numerical calculations, and has

dimension unity.

All information about the spin system is contained in

the density matrix, and changes to the system are rep-

resented by successive transformations of the density

matrix. The time-dependence of the spin system is ob-

tained by solving the Schr€oodinger equation for the

wavefunction in Eq. (1) in the presence of a particular
Hamiltonian H . The equivalent form of the Schr€oodinger

equation in terms of the density matrix is the Liouville-

von Neumann equation:

drðtÞ
dt

¼ i rðtÞ;H½ �: ð11Þ

For time-independent Hamiltonian H , the solution to

Eq. (11) is

rðtÞ ¼ e�iHtrð0ÞeiHt: ð12Þ
Therefore all information about the time-evolution of

the spin system is contained in the Hamiltonian for each
transformation performed on it, and the spin density

transforms as in Eq. (12), provided the Hamiltonians

can be rendered time-independent with a suitable

transformation.

2.2. Hamiltonians

In order to describe the evolution of the spin system
during a pulse sequence, it suffices, in light of Eq. (12), to

provide a description of the relevant Hamiltonians. There

are four Hamiltonians used in PJNMR: the Zeeman,

Scalar Coupling, Pulse, and Gradient Hamiltonians.

2.3. Zeeman Hamiltonian

The Zeeman Hamiltonian, HZ , is given by

HZ ¼
XM
i¼1

xiIiz; ð13Þ

where xi is the angular frequency, and Iiz is the z-angular

momentum operator, for the ith nucleus in an M-spin

system. The Zeeman Hamiltonian is active during all

periods of chemical shift evolution, such as during free

precessions and gradient pulses.

2.4. Scalar coupling Hamiltonian

In the limit of weak coupling (2pJij � jxi � xjj), the

scalar coupling Hamiltonian is given by

HJ ¼ 2p
XM
i¼2

Xi�1

j¼1

JijIizIjz; ð14Þ

where Jij is the coupling constant between spins i and j,
and Ii;jz are the z-angular momentum operators for spins

i and j. The scalar coupling Hamiltonian is active during
all periods of free precession and gradient pulses for

coupled nuclei.

2.5. RF pulse Hamiltonian

With the application of (the quantum-mechanical

equivalent of) a rotating-frame transformation, the rf

pulse Hamiltonian is rendered time-independent, and is
given by

Hi
e ¼ ciB1ðIx cos / þ Iy sin /Þ ð15Þ

for an on-resonance pulse on nuclei with gyromagnetic

ratio ci, applied at a phase angle of / radians to the x-axis

in the xy plane, with rf field strength B1. Eq. (15) is a

special case for pulses in the xy-plane; the term in brackets
is in general given by n � I, where n is the unit normal

vector in the direction of the applied rf field (in the ro-

tating frame), and I is the angular momentum vector. The

rotation angle of the pulse with respect to the z-axis, a,

where the rf pulse lasts s seconds, is given by a ¼ ciB1s.

2.6. Gradient Hamiltonian

During a linear z-gradient pulse, the magnetic field

along the z-axis becomes spatially inhomogeneous

through the sample, and therefore the precession fre-

quencies of the nuclei in the sample become position-

dependent. All spins during the gradient evolve under

the Chemical Shift and Scalar Coupling Hamiltonians,

with an additional Gradient Hamiltonian identical in

form to the Chemical Shift Hamiltonian with a position-
dependent frequency. Using an approximate multiple-

position approach [9], the NMR sample is divided up

into n segments in the z-direction, with the Gradient

Hamiltonian in segment k given by

Hk
G ¼

XM
i¼1

ciGzzkIzi; ð16Þ

where zk is the z-position of segment k, in meters (where

the position is measured from the center of the NMR

sample to the centerof the segment), and Gz is the gra-

dient strength, in Tesla per meter.

2.7. Evolution of the spin system

The spin density evolves under the influence of time-

independent Hamiltonians as a transformation of the

form of Eq. (12). The exponential operators themselves

are defined by their Taylor series [8], which can be

conveniently brought to closed-form using Pauli matri-
ces and their associated identities. Exponentials of sin-

gle-quantum operators Ig, where g ¼ x; y; z, are given by

e�ixtIg ¼ E cos
xt
2

	 

� 2iIg sin

xt
2

	 

; ð17Þ
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where E is the identity operator. In particular, the ex-
ponential of the rf pulse Hamiltonian R/ðaÞ with phase

/ in the xy-plane and rotation angle a can be expressed

as

R/ðaÞ ¼ e�ian�I ¼ E cos
a
2

	 

� 2in � Isin a

2

	 

: ð18Þ

Exponentials of the weak scalar coupling operator of the

form IzSz as in Eq. (14) are given by

e�i2pJtIzSz ¼ E cos
2pJt

4

� �
� 4iIzSz sin

2pJt
4

� �
: ð19Þ

Evolution of the spin density can then be computed by

implementing transformations of the form of Eq. (12)

with Pauli operator representations as in Eqs. (17)–(19).

2.8. Operator representations for multiple spins

In order to do numerical computations, the matrix

representations of the angular momentum operators
must be known for arbitrary numbers of spins. All M-

spin operators are computed as direct products of their

single-spin representations. The angular momentum op-

erator for spin k in an M-spin system, I ðMÞ
gk , where

g ¼ x; y; z, is computed from direct products of the single-

spin operator I ð1Þgk and the identity operator E as follows:

I ðMÞ
gk ¼ E1 � E2 � � � � Ek�1 � I ð1Þgk � Ekþ1 � � � � EM : ð20Þ

The single-spin operators have the following explicit

form:

Ix ¼
1

2

 
0 1

1 0

!
; Iy ¼

1

2

 
0 �i

i 0

!
;

Iz ¼
1

2

 
1 0

0 �1

!
: ð21Þ

The elements of the angular momentum operators cor-
respond to energy-level transitions in the spin system. As

an example, consider the matrix representation of the Ix
operator in a two-spin system. Eq. (22) gives the matrix

representation and the energy level transitions to which

the nonzero elements of the matrix correspond.

Ix ¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0
BB@

1
CCA

¼

0 0 jbai! jaai 0

0 0 0 jbbi! jabi
jaai! jbai 0 0 0

0 jabi! jbbi 0 0

0
BB@

1
CCA:

ð22Þ

In general, nonzero elements ðn;mÞ in the transverse (x
and y) Cartesian angular momentum operators corre-

spond to single-quantum transitions between energy
levels n and m. The transverse Cartesian angular-mo-

mentum operators may be partitioned into operators

specific to a single coherence. Thus the Ix operator for a

2-spin system in Eq. (22) may be represented as a sum of

single-coherence operators I ðn;mÞx :

Ix ¼ I ð3;1Þx þ I ð4;2Þx þ I ð1;3Þx þ I ð2;4Þx : ð23Þ
The gradient, scalar coupling, and chemical shift evo-

lution operators are by nature non-selective, meaning

they always act on all nuclei in the spin system. How-

ever, rf pulses can be confined to a small frequency

range where they act only on select nuclei types (soft or

selective pulses). Eq. (18), together with Eqs. (20) and

(21) give the matrix representation for a selective pulse

operator on spin k in an M-spin system. A rf pulse op-
erator acting on a set of spins S consisting of multiple

nuclei of the same type in an M-spin system2 is given by

RðMÞ
S/ ðaÞ ¼

Y
k2S

RðMÞ
k/ ðaÞ; ð24Þ

where the selective operator RðMÞ
k/ ðaÞ is a straightforward

extension of Eq. (20):

RðMÞ
k/ ðaÞ ¼ E1 � E2 � � � �Ek�1 � Rð1Þ

/ ðaÞ � Ekþ1 � � � �EM :

ð25Þ

2.9. Magnetization

The NMR observable, magnetization, is computed as

in Eq. (4) with the magnetization operator Ncm�hTrr � Img

for g-magnetization on nucleus m, where g ¼ x; y; z:

Mmg ¼ Ncm�hTrfr � Imgg: ð26Þ
For computational purposes, the magnetization com-
ponents in Eq. (26) can be normalized by the total length

of the magnetization vector for nucleus m, jMmj:

M comp
mg ¼ Mmg

Mmj j : ð27Þ

As noted above, the nonzero elements in the transverse

Cartesian angular momentum operators can be associ-

ated with specific single-quantum energy level transi-
tions. The magnetization in Eq. (26) can then be

partitioned similarly into a sum of magnetizations pro-

duced by individual single-quantum coherences:

Mmg ¼
X

ðn;mÞ21QC

M ðn;mÞ
mg ; ð28Þ

where ‘‘1QC’’ refers to the set of all pairs of energy level

indices ðn;mÞ corresponding to single-quantum coher-
ences.

2 For example, if there were two protons, the first and third nuclei

in a three-spin system, the set would consist of the integers 1 and 3:

S ¼ f1; 3g.
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3. Program organization

3.1. Pure Java NMR

PJNMR is an acronym for P ure J ava NMR. It is a

100% pure Java application, meaning it is written en-

tirely in the Java programming language. Java was

chosen as the sole development language for PJNMR

for several reasons. First, Java allows complete platform
independence, making PJNMR a truly portable tool.

Thus, PJNMR may be run on any machine where a

valid Java Runtime Environment (JRE) is installed.3

Second, Java�s object-oriented structure provides an

intuitive framework for developing the graphical inter-

face (see section Object-Oriented Framework). Third,

Java provides a large array of packages for future ex-

tensions of the program. The result is a versatile, richly
graphical, and highly usable program for NMR educa-

tion and professional pulse sequence design. See Section

4 for example PJNMR sessions.

3.2. Object-oriented framework

PJNMR follows the model-view-controller object-

oriented design pattern [10]. In this design methodology,
object s are grouped into three categories: ‘‘model’’,

‘‘view’’, and ‘‘control’’. All objects designated as model

are solely responsible for performing meaningful oper-

ations on the underlying data in the program. View

objects are then responsible for giving some appropriate

representation of the data to the user. Controller objects

coordinate the manipulation of the underlying model

through user interaction. Fig. 1 shows a standard in-
heritance diagram [11] for the objects used in PJNMR,

shown with a number of fundamental Java libraries (or

‘‘packages’’) they depend on. The diagram shows how

the objects are grouped into the model, view, and con-

troller categories.

The ‘‘model’’ in PJNMR is completely represented by

the MathEngine class, which is responsible for storing

the current state of the density matrix, and computing
the effects of all transformations initiated by user com-

mands. ‘‘Control’’ is facilitated by subclasses of two

main object types: AbstractAction and AbstractCom-

mand. Fig. 2 shows an event flowchart depicting a pulse

command. When a user command is registered through

interaction with the graphical interface (e.g., a button is

clicked or a menu item is selected), an object of type

AbstractAction is notified. In the figure, a clicking on a
pulse button notifies a PulseAction object (Fig. 1 shows

that PulseAction is one of the subclasses of Abstract-

Action, which resides in the javax.swing Java library).

The AbstractAction object then creates an object of type

AbstractCommand (in the figure, a PulseCommand
object is generated by the PulseAction object). The

AbstractCommand is then parsed (or consumed) by

MathEngine, and the required transformation on the

density matrix is performed.

This signaling pathway is intermediated by the Glo-

bals class, shown as a member of the ‘‘control’’ group in

Fig. 1. The Globals class holds all global variables (i.e.,

all data accessible to the rest of the class hierarchy) and
contains methods for coordinating program initializa-

tion, command execution, and modifying global data

structures. The most notable data structure is sequence

of commands given by the user, which is of type Macro,

a subclass of the Vector data structure in Java (see Fig.

1). The Macro object represents the pulse sequence be-

ing generated by the user.

The ‘‘view’’ in PJNMR consists of all classes of type
JPanel and JFrame, as shown in Fig. 1. The final action

in the sequence of events shown in Fig. 2 is an update of

the PJNMRPanel object, which displays the resulting

density matrix and magnetization vectors.

3.3. Gradients

PJNMR employs an approximate multi-position
(MP) approach [9] to simulate the effect of a linear field

gradient in the z-direction (along the long axis of the

NMR sample). Using the MP approach, the sample

is divided up into slices of finite thickness, with the

Gradient Hamiltonian in each slice given by Eq. (16).

Table 1 lists the gradient parameters used in PJNMR.

According to [9], for an accurate phase sampling of a

particular coherence in a general heteronuclear system,
the number of sample slices, N , must not have a com-

mon factor with the quantityPin the coherence

a ca
cH

; ð29Þ

where the sum extends over all nuclei involved in the

coherence in question, and cH is the gyromagnetic ratio

of the proton. Choosing N ¼ 201 ensures this condition
is satisfied for all possible coherences in the spin systems

available in PJNMR, and allows complete averaging in

every case.

Fig. 3 shows a sequence of transformations under-

gone by the density matrix for a pulse sequence that

includes gradient pulses. After the application of the first

gradient G1, the program must keep track of the density

matrix from each slice, ri
k, for the remainder of the pulse

sequence. However, in steps in between gradient pulses

G1 and G2, the average of all the transformed density

matrices �rrkþ1 is simply equal to the transform of the

average. Therefore, transformations on the density ma-

trix in between gradient pulses may be accomplished by

simply applying transformations to the average over all

the slices. However, the density matrix at each slice, ri
k,

3 See the PJNMR release notes for what constitutes a ‘‘valid’’ Java

Runtime Environment.
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Fig. 1. Standard inheritance diagram for PJNMR, showing the main Java library dependencies (diagram format taken from [7]). See [6] for further

reference to Java class inheritance rules.

Fig. 2. Action sequence initiated by a pulse command. Objects are grouped into model, view, and control categories.
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must be known in order to properly apply the next
gradient pulse. This requires that the total (accumu-

lated) transformation applied since the last gradient, U�,
must be stored in memory, as well as the per-slice den-

sity matrices immediately after the application of the last

gradient, ri
k. Upon receiving the second gradient com-

Table 1

PJNMR gradient parameters

Maximum gradient strength (Gz) 60 G/cm

Number of sample slices (N ) 201

Sample length 2.0 cm

Number of gradient level increments (DAC units) 32,000

Fig. 3. Overview of transforms in a pulse sequence with gradients.

Fig. 4. Graphical interface for PJNMR.
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mand G2, the total accumulated transformation since
G1, U�, must be applied along with the new gradient

operator for slice i as follows

ri
l ¼ G2kU�r

i
l�1U

�1
� G�1

2k : ð30Þ

Here, U� is given by

U� ¼ Um�1Um�2 � � �Ukþ2Ukþ1: ð31Þ

3.4. Simulation environment

Fig. 4 shows a screenshot of PJNMR as it appears on

the UNIX platform. The separate panels are magnified

and labeled with their corresponding object names

(shown in Fig. 1). All commands are input on the left-

hand panel (‘‘PSGPanel’’), and graphical output is given

in the three panels to the right (‘‘DMPanel’’, ‘‘Axis-

Panel’’, and ‘‘SequenceGraph’’). These three panels dis-

play the density matrix, the magnetization vectors for
each nucleus, and the pulse sequence as it is generated by

user input. A brief description of each panel follows.

3.5. PSG panel

The panel labeled ‘‘PSGPanel’’ (Pulse Sequence

Generator Panel) in Fig. 4 is the �control center� of the

program. All spin system configuration and pulse se-
quence commands are entered in this panel.

The PSG Panel is divided vertically into five sub-

panels. The top panel accepts parameters for the spin

system, including number and type of nuclei, chemical

shifts, and coupling constants. Preset values for chem-

ical shifts and coupling constants can be selected or

arbitrary user values entered. The next panel holds

buttons for applying selective pulses to the different
nuclei in the spin system. A number of preset pulses

with flip and phase angles in increments of 90 degrees

are available, as well as pulses of arbitrary flip and

phase angles. Below the pulse panel is the precession

panel, with commands for initiating precessions of ar-

bitrary length, as well as precessions of the form 1=xJ ,

where J is a coupling constant and x is one of the in-

tegers 2, 4, or 8. The next panel down is for entering
gradient commands, where the length of time of the

gradient and the power level of the gradient in DAC

units is specified. The bottom-most panel on the PSG

Panel contains an interactive command history.

Once the spin system configuration is chosen and

accepted in the top panel, the remainder of the PSG

Panel configures itself to accommodate pulse and pre-

cession commands appropriate for the chosen spin
system.

Fig. 5. Correspondence between magnetization vectors and single-quantum coherences in a 1, 2, and 3-spin system. The colors used in PJNMR for

the vectors are also shown.
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3.6. DM panel

The panel labeled ‘‘DMPanel’’ (Density Matrix Pa-

nel) in Fig. 4 shows the density matrix for the current

state of the spin system. The density matrix elements

are imaginary numbers displayed in polar coordinates.

The numerical value of a given element of the density

matrix can be displayed at any time by clicking on the

element.

3.7. Axis panel

The panel labeled ‘‘AxisPanel’’ (magnetization

Axis Panel) in Fig. 4 shows the magnetization vectors

for each nucleus in the spin system. The magnetiza-

tion for each nucleus is displayed as multiple vectors

corresponding to the single-quantum coherences it
participates in (Eq. (28)). Fig. 5 shows the corre-

spondence between the colored magnetization vectors

and their associated coherences for 1, 2, and 3 spins.

3.8. Sequence graph

The panel labeled ‘‘SequenceGraph’’ in Fig. 4 shows

the pulse sequence as it is generated by user com-
mands.

4. Results and discussion

Because PJNMR can be run identically on

Windows, Macintosh, UNIX, and Linux machines,

users have the ability to take the program into almost

every area of their work environment. Users may also

share PJNMR macro files amongst each other, al-

lowing scientific collaboration across diverse compu-

tational environments. These features make PJNMR
an ideal educational and professional tool. Early ver-

sions of PJNMR are already gaining recognition as a

valuable in-class tool for demonstrating NMR con-

cepts, as well as an accurate, fast, and easily under-

standable simulation program for complex pulse

sequence design.

4.1. Example pulse sequences

To illustrate the utility of PJNMR, several pulse se-

quences will be demonstrated here.

4.1.1. 1H 90-x

Fig. 6 shows a screen shot of PJNMR after ap-

plying a simple 90x pulse and 0.33 ms precession on a

single proton. The density matrix shows that after the
90it x pulse, single-quantum coherence develops be-

Fig. 6. Screen shot of PJNMR 2.0 showing the state of a single proton after a 90x pulse and a 0.33 ms precession.
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Fig. 7. Screen shots of the density matrix at four stages in a 1H–1H double quantum filter pulse sequence.

Fig. 8. Screen shots of the magnetization vectors at four stages in a 1H–1H double-quantum filter pulse sequence.
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Fig. 9. Screen shots of the density matrix at four stages in a HNCO pulse sequence.
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tween the two energy states of the system, indicated

by the nonzero values in the off-diagonal elements of

the matrix. The single quantum coherence then pre-

cesses as the system evolves under the Chemical Shift

Hamiltonian, shown by the rotation of the vectors on
the matrix and the corresponding rotation of the

magnetization vector. The two symmetric off-diagonal

elements represent the single coherence present be-

tween the up and down states in the spin system.

These are complex conjugates of each other and

therefore rotate in the opposite sense as the coherence

evolves.

4.1.2. 1H � 1H double-quantum filter (DQF)

Figs. 7 and 8 show a series of screen shots of the

density matrix and magnetization vectors during a
1H � 1H double-quantum filter (DQF) pulse sequence.

The indices of the density matrices in Fig. 7 corre-

spond to the numbering of basis states given in Fig.

5(b), as well as the partitions of the Ix operator in Eq.

(23).4 Captions (a)–(c) in Figs. 7 and 8 show that only

single-quantum coherences are present in the 1H � 1H
system, characterizing the presence of x-magnetization

on both nuclei, until the final 90x pulse is given.

Caption (d) in both figures shows pure double-quan-

tum coherence precessing after the 90x pulse, in the

Fig. 10. Screen shots of the magnetization vectors at four stages in a HNCO pulse sequence.

4 For example, the density matrix in Fig. 7(a) has a pure imaginary

element at index (1,2). Referring to Fig. 5(b), indexes 1 and 2

correspond to the jaai and jabi basis states, respectively. Therefore, the

presence of a nonzero element at index (1,2) in the density matrix in

Fig. 7(a) corresponds to a single-quantum coherence between the jaai
and jabi basis states, or x-magnetization for the second proton in the

spin system.
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absence of any observable magnetization. This clearly

illustrates in graphical form the fundamental quantum-

mechanical property that only single-quantum coher-

ences are experimentally observable in NMR. The

polar-coordinate representation of the density matrix

also highlights that all orders of coherences have phase

and magnitude properties, which can be read out ei-

ther directly or indirectly by suitably chosen pulse se-

quences.

4.1.3. HNCO

Figs. 9 and 10 show screen shots of the density matrix

and magnetization vectors in PJNMR throughout the

HNCO pulse sequence. The indices of the density ma-

trices in Fig. 9 correspond to the numbering of the basis

states for a 3-spin system shown in Fig. 5(c) (see Foot-

note 4). The density matrices in Fig. 10 show that as
magnetization is transferred from the proton to the ni-

trogen and finally to the carbon, single-quantum co-

herences involving each respective nucleus appear.
Nonzero elements along the diagonals are present at

stages (a) through (c) due to z-magnetization in the spin

system, and are not present at stage (d), where only

pure anti-phase magnetization on the carbon nucleus

remains.

4.1.4. Gradient echo

Figs. 11 and 12 show the density matrices and mag-
netization vectors throughout a 1H � 1H gradient echo

pulse sequence. As in the DQF experiment above, sin-

gle-quantum coherence in this pulse sequence gives way

to pure double-quantum coherence. In Fig. 11(b), an

initial ‘‘crusher’’ gradient has dephased single-quantum

coherences, destroying the x-magnetization present in

Fig. 12(a). After a refocussing period, a second identical

gradient pulse is applied, rephasing the single-quan-
tum coherences and recovering the x-magnetization, as

shown in Figs. 11(c) and 12(c). The final 90x pulse

Fig. 11. Screen shots of the density matrix at four stages in a gradient echo pulse sequence.
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produces pure double-quantum coherence, which then
precesses under chemical shift.

5. Conclusions

PJNMR 2.0 is a new program for pulse sequence

simulation on systems of up to 3 weakly-coupled spins-

1/2. The program is written in the Java programming
language, providing complete platform independence, a

rich graphical interface, and an intuitive program design

using object-oriented principles. Users learn about the

quantum-mechanical and experimentally observable

state of the spin system by viewing the density matrix

and magnetization vectors at each step in the pulse se-

quence. Pulses, precessions, and gradients can all be

simulated with the program, making it ideally suited for
illustration of quantum mechanical concepts in complex

pulse sequences. PJNMR 2.0 is available for download

at www.nanuc.ca.
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